Temperature dependent magnetization dynamics of magnetic nanoparticles

نویسندگان

  • A. Sukhov
  • J. Berakdar
چکیده

Recent experimental and theoretical studies show that the switching behavior of magnetic nanoparticles can be well controlled by external time-dependent magnetic fields. In this work, we inspect theoretically the influence of the temperature and the magnetic anisotropy on the spin-dynamics and the switching properties of single domain magnetic nanoparticles (Stoner-particles). Our theoretical tools are the Landau-Lifshitz-Gilbert equation extended as to deal with finite temperatures within a Langevine framework. Physical quantities of interest are the minimum field amplitudes required for switching and the corresponding reversal times of the nanoparticle’s magnetic moment. In particular, we contrast the cases of static and time-dependent external fields and analyze the influence of damping for a uniaxial and a cubic anisotropy. PACS numbers: 75.40.Mg, 75.50.Bb, 75.40.Gb, 75.60.Jk, 75.75.+a Temperature dependent magnetization dynamics of magnetic nanoparticles 2

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Superparamagnetic Behavior of the Magnetic Hysteresis Loop in the Fe2O3@Pt Core-Shell Nanoparticles

Studies of the magnetization of Fe2O3@Pt nanoparticles at room temperature showed that there is superparamagnetic contribution with high saturation magnetization about 12.35(emu/g), and soft ferromagnetic contribution with narrow coercive field about 58(Oe). In this paper we fitted the hystersis loop of sample with Brillouin function that demonstrating existence of superparamagnetic phase. Tota...

متن کامل

Applying a suitable route for preparation Fe3O4 nanoparticles by Ammonia and investigation of their physical and different magnetic properties

Iron oxide nanoparticles were synthesized by coprecipitation method using ammonia as precipitation agent. Most researchers usually add ammonia into the iron salt solution but in this work the salt solution drop wise has been added to the ammonia and the new obtained results were compared with those of other researches. Magnetic properties of nanoparticles were measured by VSM. The effect of rea...

متن کامل

Applying a suitable route for preparation Fe3O4 nanoparticles by Ammonia and investigation of their physical and different magnetic properties

Iron oxide nanoparticles were synthesized by coprecipitation method using ammonia as precipitation agent. Most researchers usually add ammonia into the iron salt solution but in this work the salt solution drop wise has been added to the ammonia and the new obtained results were compared with those of other researches. Magnetic properties of nanoparticles were measured by VSM. The effect of rea...

متن کامل

Uniform excitations in magnetic nanoparticles

We present a short review of the magnetic excitations in nanoparticles below the superparamagnetic blocking temperature. In this temperature regime, the magnetic dynamics in nanoparticles is dominated by uniform excitations, and this leads to a linear temperature dependence of the magnetization and the magnetic hyperfine field, in contrast to the Bloch T(3/2) law in bulk materials. The temperat...

متن کامل

Local spin dynamics of iron oxide magnetic nanoparticles dispersed in different solvents with variable size and shape: A 1H NMR study.

Colloidal magnetic nanoparticles (MNPs) based on a nearly monodisperse iron oxide core and capped by oleic acid have been used as model systems for investigating the superparamagnetic spin dynamics by means of magnetometry measurements and nuclear magnetic resonance (1H NMR) relaxometry. The key magnetic properties (saturation magnetization, coercive field, and frequency dependent "blocking" te...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008